Torashii Style Factors
Style factor implementations.
factor_mom(returns_df, trailing_days=504, half_life=126, lag=20, winsor_factor=0.01)
Estimate rolling symbol by symbol momentum factor scores using asset returns.
Parameters
returns_df: Polars DataFrame containing columns: | date | symbol | asset_returns | trailing_days: int look back period over which to measure momentum half_life: int decay rate for exponential weighting, in days lag: int number of days to lag the current day's return observation (20 trading days is one month)
Returns
Polars DataFrame containing columns: | date | symbol | mom_score |
Source code in torashii/styles.py
factor_sze(mkt_cap_df, lower_decile=0.2, upper_decile=0.8)
Estimate rolling symbol by symbol size factor scores using asset market caps.
Parameters
mkt_cap_df: Polars DataFrame containing columns: | date | symbol | market_cap |
Returns
Polars DataFrame containing columns: | date | symbol | sze_score |
Source code in torashii/styles.py
factor_val(value_df, winsorize_features=None)
Estimate rolling symbol by symbol value factor scores using price ratios.
Parameters
value_df: Polars DataFrame containing columns: | date | symbol | book_price | sales_price | cf_price winsorize_features: optional float indicating if the features should be winsorized. none applied if None
Returns
Polars DataFrame containing: | date | symbol | val_score |